Early Retinal Neuronal Dysfunction in Diabetic Mice: Reduced Light-Evoked Inhibition Increases Rod Pathway Signaling

نویسندگان

  • Johnnie M. Moore-Dotson
  • Jamie J. Beckman
  • Reece E. Mazade
  • Mrinalini Hoon
  • Adam S. Bernstein
  • Melissa J. Romero-Aleshire
  • Heddwen L. Brooks
  • Erika D. Eggers
چکیده

PURPOSE Recent studies suggest that the neural retinal response to light is compromised in diabetes. Electroretinogram studies suggest that the dim light retinal rod pathway is especially susceptible to diabetic damage. The purpose of this study was to determine whether diabetes alters rod pathway signaling. METHODS Diabetes was induced in C57BL/6J mice by three intraperitoneal injections of streptozotocin (STZ; 75 mg/kg), and confirmed by blood glucose levels > 200 mg/dL. Six weeks after the first injection, whole-cell voltage clamp recordings of spontaneous and light-evoked inhibitory postsynaptic currents from rod bipolar cells were made in dark-adapted retinal slices. Light-evoked excitatory currents from rod bipolar and AII amacrine cells, and spontaneous excitatory currents from AII amacrine cells were also measured. Receptor inputs were pharmacologically isolated. Immunohistochemistry was performed on whole mounted retinas. RESULTS Rod bipolar cells had reduced light-evoked inhibitory input from amacrine cells but no change in excitatory input from rod photoreceptors. Reduced light-evoked inhibition, mediated by both GABAA and GABAC receptors, increased rod bipolar cell output onto AII amacrine cells. Spontaneous release of GABA onto rod bipolar cells was increased, which may limit GABA availability for light-evoked release. These physiological changes occurred in the absence of retinal cell loss or changes in GABAA receptor expression levels. CONCLUSIONS Our results indicate that early diabetes causes deficits in the rod pathway leading to decreased light-evoked rod bipolar cell inhibition and increased rod pathway output that provide a basis for the development of early diabetic visual deficits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition to retinal rod bipolar cells is regulated by light levels.

The retina responds to a wide range of light stimuli by adaptation of retinal signaling to background light intensity and the use of two different photoreceptors: rods that sense dim light and cones that sense bright light. Rods signal to rod bipolar cells that receive significant inhibition from amacrine cells in the dark, especially from a rod bipolar cell-activated GABAergic amacrine cell. T...

متن کامل

The mode of retinal presynaptic inhibition switches with light intensity.

Excitatory amino acid transporters (EAATs) terminate signaling in the CNS by clearing released glutamate. Glutamate also evokes an EAAT-mediated Cl(-) current, but its role in CNS signaling is poorly understood. We show in mouse retina that EAAT-mediated Cl(-) currents that were evoked by light inhibit rod pathway signaling. EAATs reside on rod bipolar cell axon terminals where GABA and glycine...

متن کامل

Inhibition to retinal rod bipolar cells is regulated by light levels 1 2 Running head : Regulation of rod bipolar cell

29 The retina responds to a wide range of light stimuli by adaptation of retinal signaling to 30 background light intensity and the use of two different photoreceptors: rods that sense dim light 31 and cones that sense bright light. Rods signal to rod bipolar cells that receive significant 32 inhibition from amacrine cells in the dark, especially from a rod bipolar cell activated 33 GABAergic a...

متن کامل

Dopamine Deficiency Mediates Early Rod-Driven Inner Retinal Dysfunction in Diabetic Mice

Purpose Electroretinograms (ERGs) are abnormal in diabetic retinas before the appearance of vascular lesions, providing a possible biomarker for diabetic vision loss. Previously, we reported that decreased retinal dopamine (DA) levels in diabetic rodents contributed to early visual and retinal dysfunction. In the current study, we examined whether oscillatory potentials (OPs) could serve as a p...

متن کامل

Inhibition of inducible nitric oxide synthase reverses the loss of functional hyperemia in diabetic retinopathy.

Neuronal activity leads to arteriole dilation and increased blood flow in retinal vessels. This response, termed functional hyperemia, is diminished in the retinas of diabetic patients, possibly contributing to the development of diabetic retinopathy. The mechanism responsible for this loss is unknown. Here we show that light-evoked arteriole dilation was reduced by 58% in a streptozotocin-indu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2016